Roots Millennium School Khyber Campus Peshawar 1st Term Exam Dec. 2016 Class: 8th Time: 3 hrs
Paper: Maths Total Mark:75
Name:_______________________ Class__________
Section._____________
Section - A Marks:15
Time Allowed: 20 minutes Q.1. Write the correct option i.e. A,B,C or D in the boxes given in the front of each question. i.
If a matrix A is such that 𝐴 = −𝐴𝑡 then A is ___________ matrix. A. Skew Symmetric
B. Diagonal
C. Symmetric
2 3 ii. If 𝐴 = [ ] then AdjA equals to _____ 3 4 4 −3 −2 3 4 A. [ ] B. [ ] C. [ 3 2 3 −4 −3
−3 ] 2
1 3 ] then 𝐴−1 equals to _____ 2 −2 1 −2 −3 1 −1 −2 −3 [ ] B. − [ ] C. − [ 8 8 2 −2 1 −2 1
D. None of these
D. None of These
iii. If 𝐴 = [ A.
1 8
3 ] 2
D. None of These
1 0 iv. If 𝐴 = [ ] then A is called _____ matrix? 0 1 A. Singular B. Scalar C. Diagonal
x 2 3 then solution set is_______.
v. If A. vi
D. Identity
{-1,-5}
B.
{-1,5}
C
{1,5}
D. {1,-5}
x 2 6 then solution set is _________.
If A.
{38}
B. {34}
C. { }
D. {-4}
vii. (ab)-1/n =_______ A. (ab)n
B. 1/(ab)n
C. 1/(ab)1/n
D. (ab)-n
C.
D. -4ab
viii. (a+b)2+(a-b)2=___________ A. 2ab
B. -2ab
4ab
ix. If A 2 3 then order of A is________. 1 4
A. 1 by 2 x.
B. 2 by 2
C. 2 by 1
D. 1 by 1
C.
D. -45
If a=2 then 5a-10=_______ A. 0
B. -5
5
xi. A+B=B+A is called _________law. A.
Distributive
B.
Commutative
C. Associative
xii. If A 7 8 then determinant of A is __________. 3 2
A. 10
B. 38
C. -10
D. 24
D. Transitive
xiii.
If A 3 1 then At =________. 9 2 A.
B. 3 9 1 2
3 1 1 2
C. 3 1 9 2
D. 2 1 9 3
2 xiv. 12a b ______ 4ab
A. 3a
B. 3ab
C.
ab
D.
-3ab
xv. If in a matrix number of rows and number of columns are equal then it is called __________ matrix. A. 𝑠𝑞𝑢𝑎𝑟𝑒
B. 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟
C. 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
D. 𝑑𝑖𝑎𝑔𝑜𝑛al
Section – B
Marks: 36
Note: Time allowed for section B and C is 2hrs and 45 minutes. Q.2.
Attempt any 9 question of the following, each question carry 04 marks. 4 6 1 7 and B A 8 2 3 4
(i). Find the product of
x6 5
(ii). Solve
1 13 2 C 3 3 5
(iii). Find the determinant of
x3 4 x 4
3
(iv). Simplify
4 𝐶=[ −1
(v). Find the multiplicative inverse of (vi). If 𝐶 = [
a 𝑐
(vii). If 𝐴 = [
−3 ]. 2
𝑏 ] show that (𝐶 𝑡 )𝑡 = 𝐶. 𝑑
−1 ] 1
𝐵 = [2
−2] 𝑎𝑛𝑑 𝐶 = [
3 −1
1 ] then prove that 2
(AB)C=A(BC).
x 12 6
(viii). Find the solution set of 1
(ix). Simplify 36 2 49
x 1
(x). Show on number line (xi). Let 𝐴 = [3 (xii). If 𝐴 = [
7 2
2
1],
1 1 ], 𝐵 = [ 4 2
𝐵[−3
4
2], prove that (𝐴 + 𝐵)𝑡 = 𝐴𝑡 + 𝐵𝑡
1 ] Show that commutative law holds. 2
Section – “C” Note: Attempt any 3 questions of the following, each question carry 08 marks. Q.3. Solve the following using Cramer’s rule; 𝑥 − 2𝑦 = 5 , 2𝑥 − 𝑦 = 6 Q.4. Solve the following using Inversion method 𝑥 − 2𝑦 − 1 = 0 , 2𝑥 + 𝑦 + 3 = 0 2 Q.5. If 𝐴 = [ −3
0 1 ] and𝐵 = [ 1 −1
Q.6. Solve the radical equation.
−1 ] 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 (𝐴𝐵)−1 = 𝐵 −1 𝐴−1 . 3
2(5x 1) 2x 14
Marks: 24